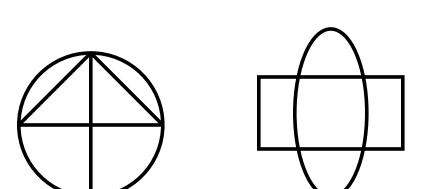
Les graphes, un jeu d'enfant?

Frédéric Havet

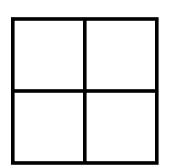
Dessin sans lever le crayon

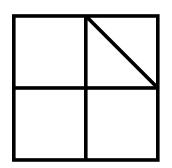
Dessiner sans lever le crayon

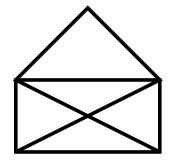
Peut-on dessiner ces formes sans lever le crayon et sans repasser sur un trait ?



Oui
si et seulement si
tous les sommets sauf 0
ou 2 sont de degré pair.







L. Euler 1707- 1783

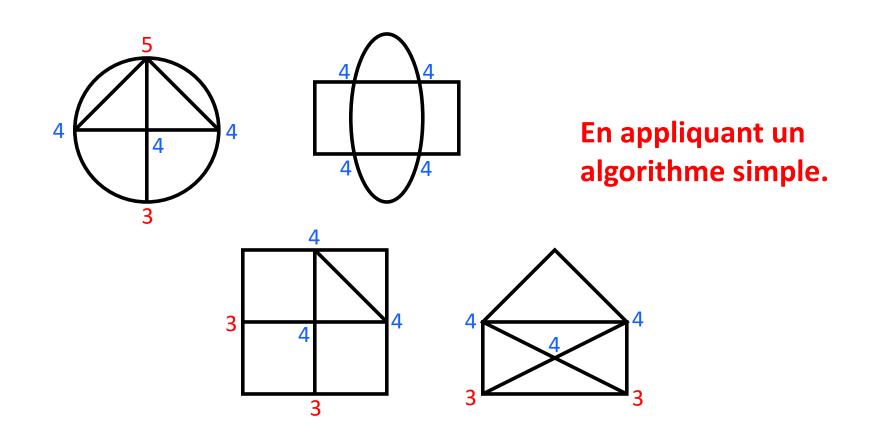
Dessiner sans lever le crayon

Peut-on dessiner ces formes sans lever le crayon et sans repasser sur un trait ?

Oui
si et seulement si
tous les sommets sauf 0
ou 2 sont de degré pair.

Dessiner sans lever le crayon

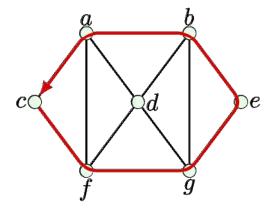
On peut dessiner les 4 formes ci-dessous sans lever le crayon et sans repasser sur un trait. Oui, mais comment ?

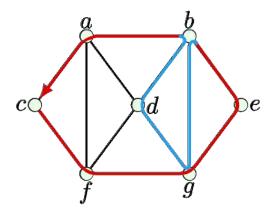


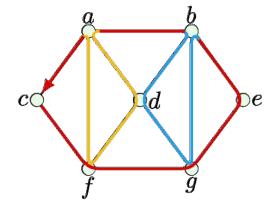
Trouver un parcours eulérien

Algorithme

- 1. Partir d'un sommet de degré impair. (ou de n'importe où s'il y en a pas).
- 2. Avancer tant qu'on peut.
- 3. Si on est bloqué,
 - Trouver un sommet où une arête est libre
 - Couper le chemin en ce sommet.
 - Repartir par une arête libre jusqu'à revenir au sommet.







Applications du parcours eulérien et ses généralisations

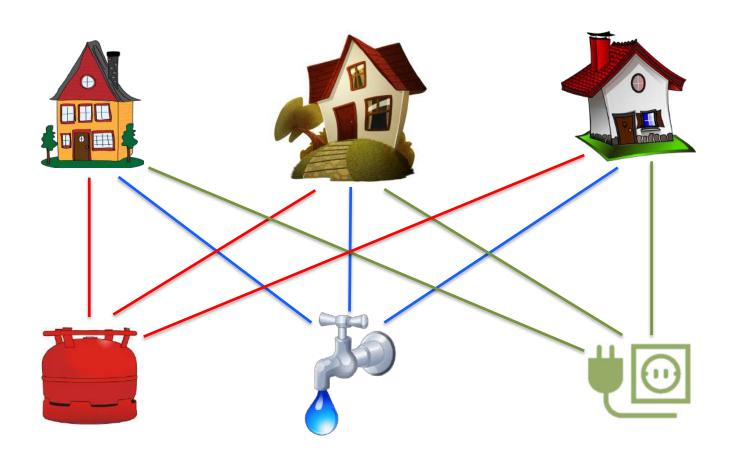
Tournée de camions poubelles.

Trouver un ensemble de tours T_1, \ldots, T_p tel que chaque rue (= arête) est dans au moins un de ces tours. On veut un tel ensemble de longueur minimum.

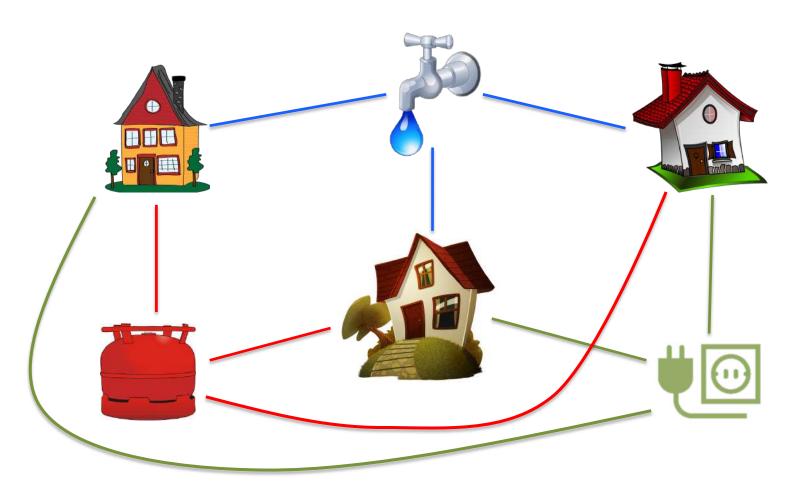
- Diagnostic ou maintenance d'un réseau par un robot.
- ➤ Bioinformatique. Reconstruction de séquences ADN à partir de fragments.

Dessin sans croisement

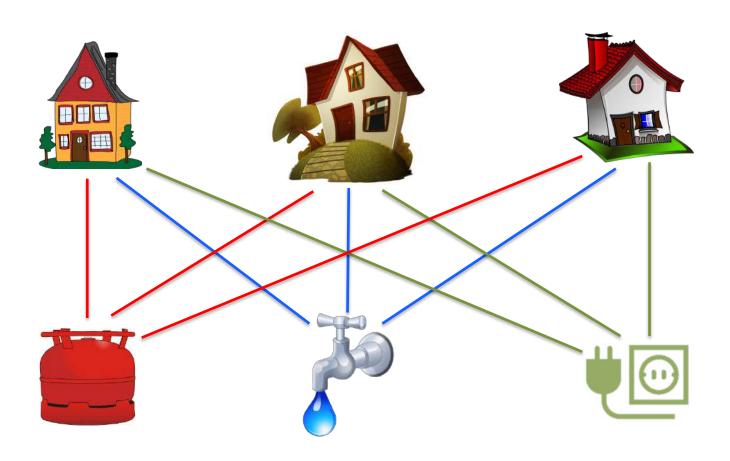
Peut-on relier trois maisons à l'eau, le gaz et l'électricité sans que les canalisations se croisent ?



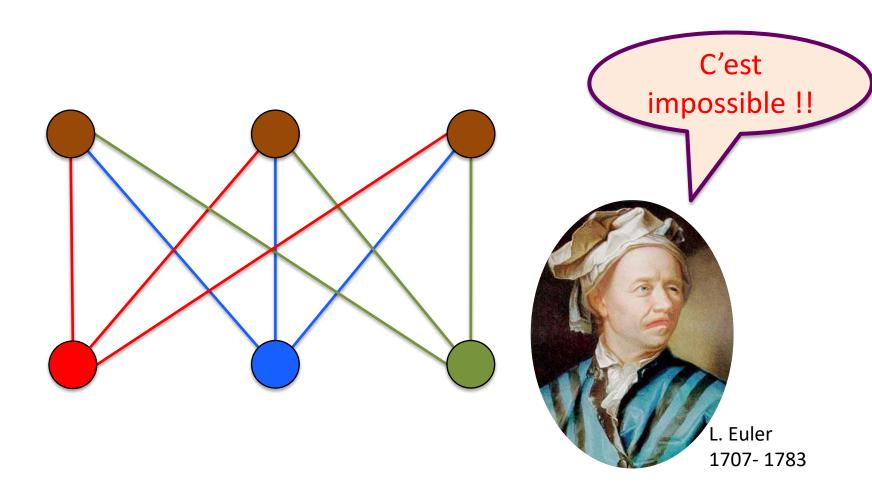
Peut-on relier trois maisons à l'eau, le gaz et l'électricité sans que les canalisations se croisent ?



Peut-on relier trois maisons à l'eau, le gaz et l'électricité sans que les canalisations se croisent ?



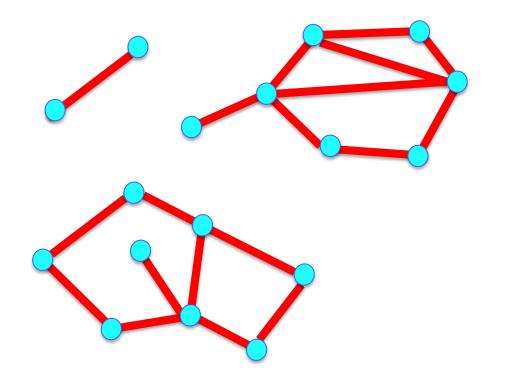
Peut-on dessiner le graphe ci-dessous sans que les arêtes se croisent ? i.e. ce graphe est-il *planaire* ?



Peut-on dessiner le graphe ci-dessous sans que les arêtes se croisent ? i.e. ce graphe est-il *planaire* ?

Formule d'Euler: Pour un graphe planaire,

nb de sommets + nb de faces = nb d'arêtes + nb de composantes +1



$$S + F = A + C + 1$$

$$S = 17$$

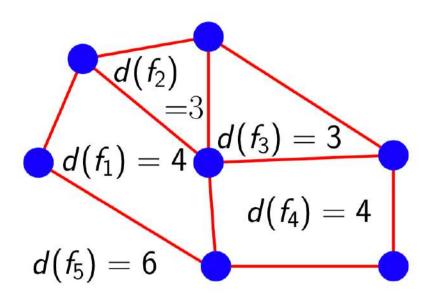
$$A = 19$$

$$F = 6$$

$$C = 3$$

Solution du problème Gaz-Eau-Electricité

degré d'une face f, d(f): nombre d'arêtes "autour" de f.



Une arête est autour de deux faces. Ainsi $\sum_{f \text{ face}} d(f) = 2 \times A$.

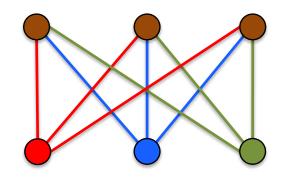
Ici:
$$d(f_1) + d(f_2) + d(f_3) + d(f_4) + d(f_5)$$

= $4 + 3 + 3 + 4 + 6 = 20 = 2 \times 10$.

Solution du problème Gaz-Eau-Electricité

Dans notre graphe, les faces seraient de degré au moins 4.

$$2A = \sum_{f \text{ face}} d(f) \ge 4F$$
, soit $F \le \frac{1}{2}A$.



$$A = S + F - 2$$

$$\leq S + \frac{1}{2}A - 2$$

$$\frac{1}{2}A \leq S-2$$

$$A \le 2S - 4$$
.

Formule d'Euler

Or le graphe a 6 sommets et 9 arêtes.

$$A = 2S - 3$$
.

Il ne peut pas être planaire.

Application graphes planaires

Conception de circuit intégrés

 sans ou avec le minimum de croisements.

 Combinaison de milliers de transistors sur une puce.

Planification de réseaux. routiers, de télécommunications, ...

Un ballon de foot avec que des hexagones?

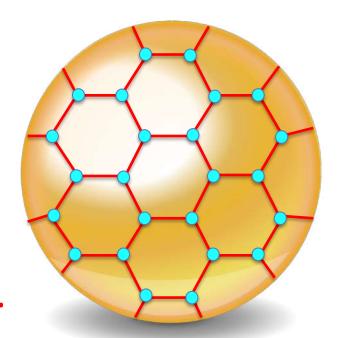
Supposons qu'il y ait n faces hexagonales.

Chaque arête est dans 2 faces.

il y a 6n/2 = 3n arêtes.

Chaque sommet est dans 3 faces.

il y a 6n/3 = 2n sommets.

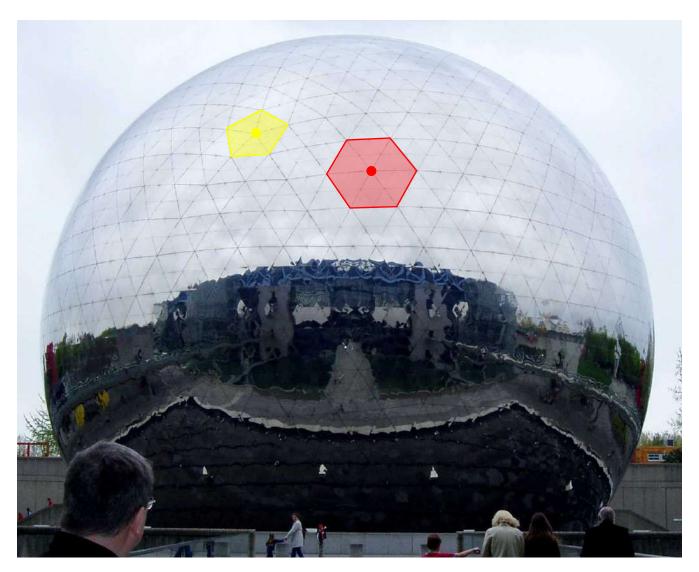


Formule d'Euler:

nombre de 2500 mmets + nombre the facters = 130 mm le d'arêtes + 2

C'est IMPOSSIBLE

Les géodes



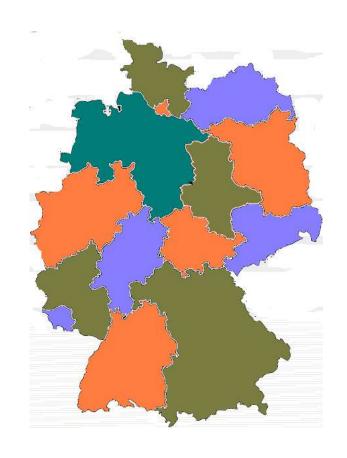
Géode, Cité des Sciences, Paris

Coloration de cartes

Problème des 4 couleurs

1852: Francis Guthrie:

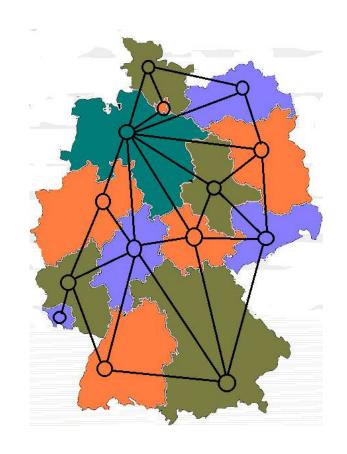
Peut-on colorer les régions (connexes) d'une carte avec 4 couleurs de telle sorte que deux régions voisines aient des couleurs différentes ?



Problème des 4 couleurs

1852: Francis Guthrie:

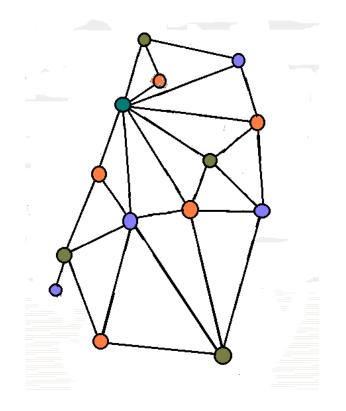
Peut-on colorer les régions (connexes) d'une carte avec 4 couleurs de telle sorte que deux régions voisines aient des couleurs différentes ?

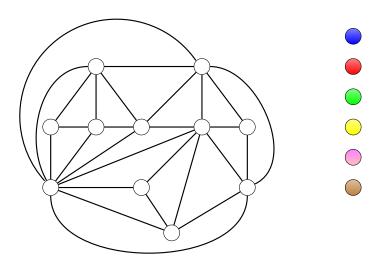


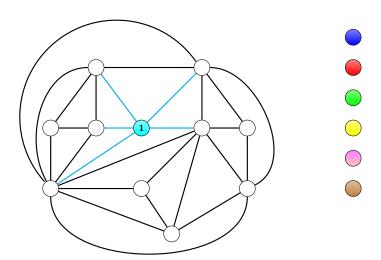
Problème des 4 couleurs

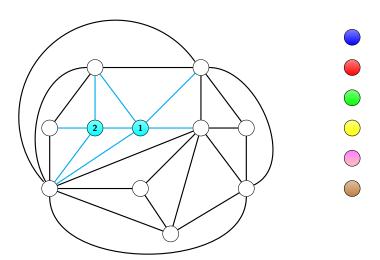
1852: Francis Guthrie:

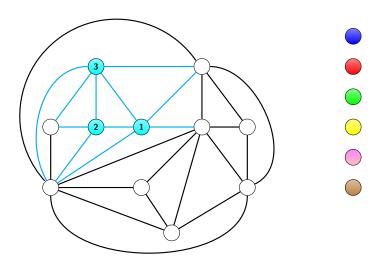
Peut-on colorer les sommets d'un graphe planaire avec 4 couleurs de telle sorte que deux sommets adjacents aient des couleurs différentes ?

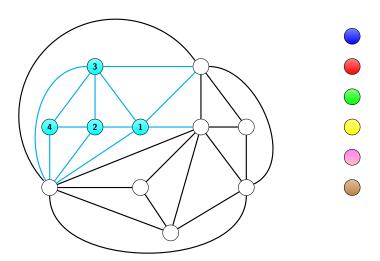


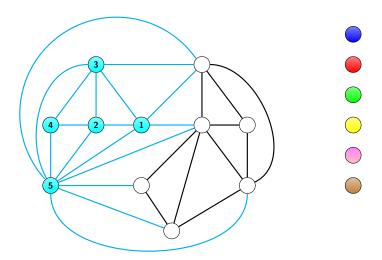


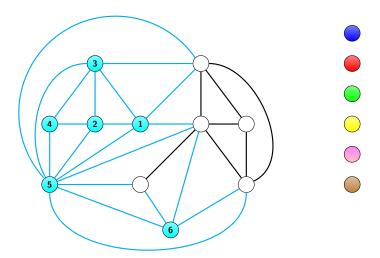


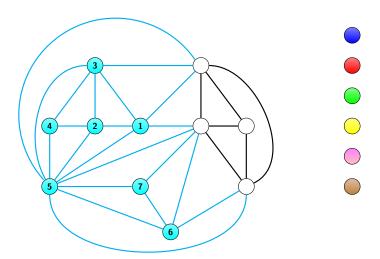


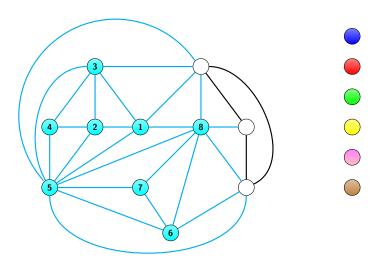


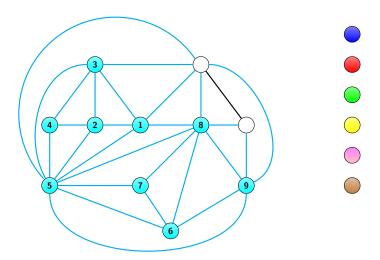


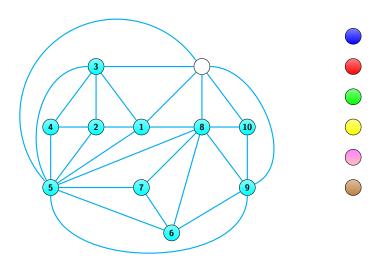


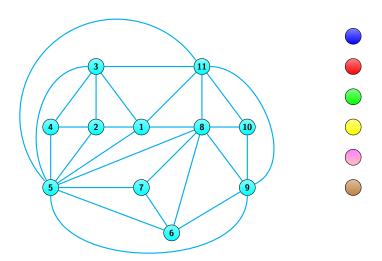


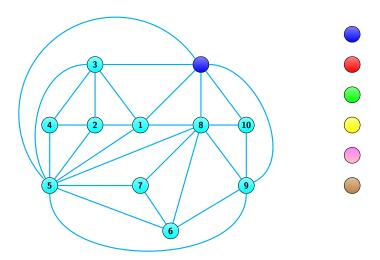


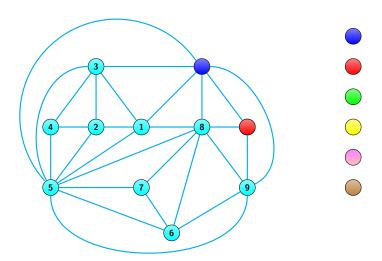


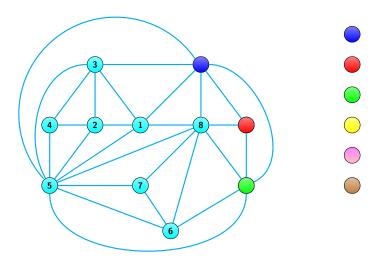


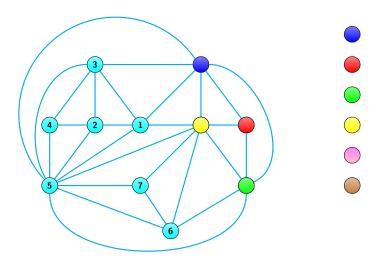


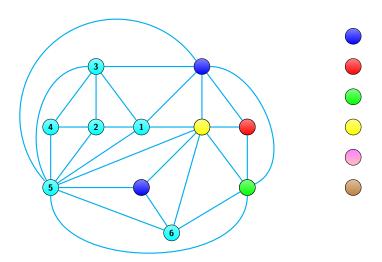


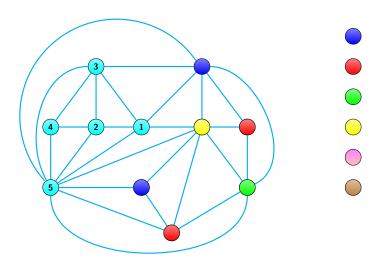


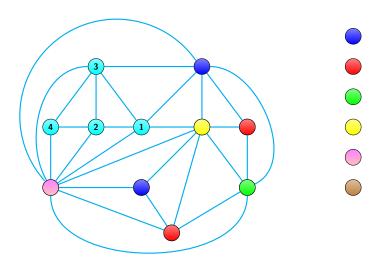


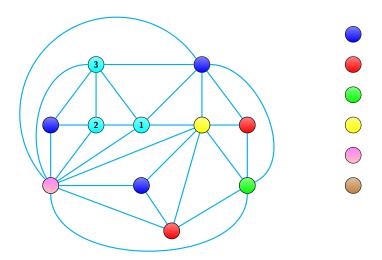


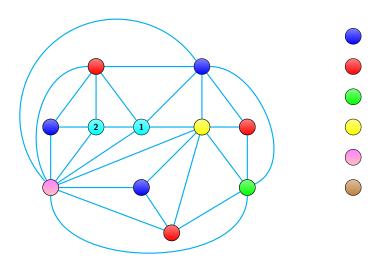


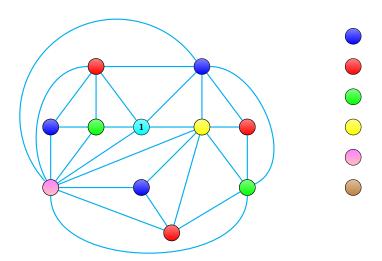


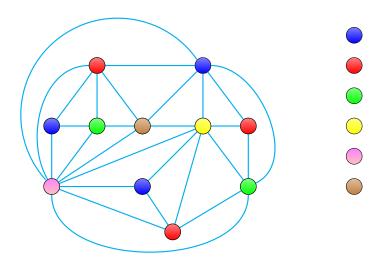


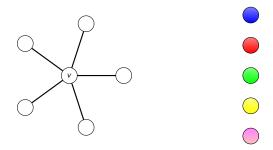


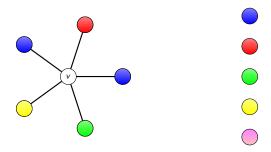


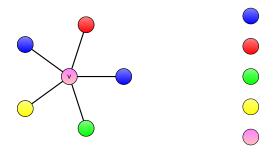


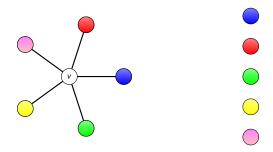


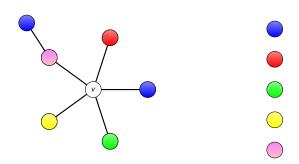


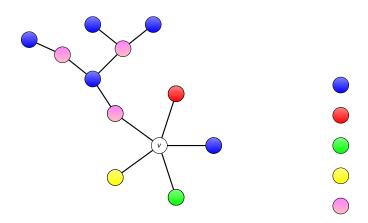


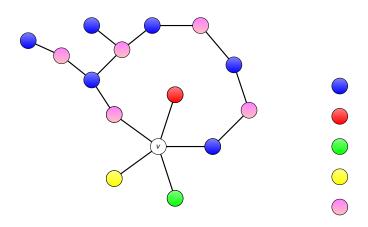


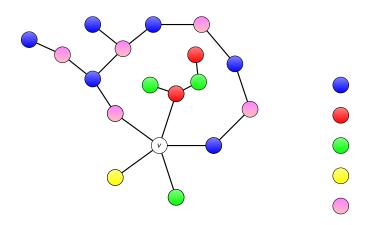


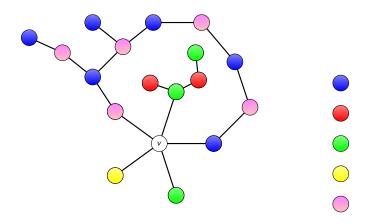


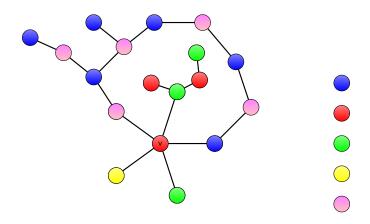












Tout graphe planaire est 4-colorable.

Fausses preuves: Kempe (1879), Tait (1880).

Erreurs trouvées par Heawood (1890) et Petersen (1891).

1976: Preuve par Appel et Haken.

Réduction à 1478 graphes critiques. **Utilisation de l'ordinateur** pour résoudre ces cas. Problème pour la validation:

- Vérification de l'algorithme.
- Vérification de l'implémentation.

1995: Nouvelle preuve par Robertson, Sanders, Seymour et Thomas. Réduction à 633 cas.

2005: une version en Coq par Gonthier et Werner.

Vérification automatique par ordinateur.

Coloration avec 3 couleurs

Problème:

Entrée : un graphe planaire G.

Question: G est-il 3-colorable?

Il y a 3^n affectations de couleurs possibles, donc on peut le faire en temps $O^*(3^n)$.

Conjecture: c'est impossible en temps polynomial.

C'est P ≠ NP, une des conjectures du millénaire.

1 million de dollars est offert pour qui la montre ou la réfute.

Applications de la coloration

Ordonnancement.

Sommets = taches.

Arêtes entre des tâches concurrentes.

Couleurs = intervalles de temps.

Coloration du graphe = ordonnancement possible des tâches.

Minimiser le nombre de couleurs = minimiser le temps pour effectuer toutes les tâches.

Allocation de fréquences.

Sommets = transmetteurs.

Arêtes entre des transmetteurs dont les zones s'intersectent.

Couleurs = fréquences.

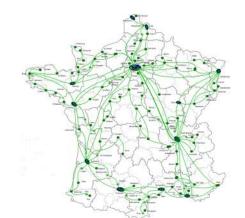
Coloration du graphe = allocation de fréquences sans interférences.

Minimiser le nombre de couleurs = minimiser la largeur de bande nécessaire.

Graphe: un modèle naturel

Réseaux routiers : Sommets = villes.

Arêtes = routes.



Réseaux d'ordinateurs : Sommets = ordinateurs/ routeurs.

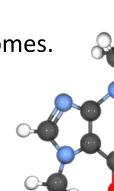
Arêtes = liens physiques ou wifi.

Réseaux sociaux : Sommets = personnes.

Arêtes entre deux amis.

➤ Molécules : Sommets = atomes.

Arêtes = liaisons entre atomes.



Merci!

